
From Plato’s Frame to Menaechmus’ Conics 

Eutocius, writing in the 5th century AD, described several solutions to the problem 

of find two means in his commentary on Archimedes’s Sphere and Cylinder though 

Archimedes himself did not propose a solution.  Interestingly Eutocius mentioned 

Eudoxus but claimed Eudoxus’ solution, at least in the form available to him, was 

invalid.  He also detailed a solution attributed to Plato for which there is no other 

known historical record and the attribution is generally regarded as lacking 

credibility. 

Plato’s solution may be incorrectly attributed, but the solution itself is valid and 

may well have contributed to the solutions by Eudoxus and/or Menaechmus.  

Eudoxus’ solution is unknown but a possible solution using a curve now known as 

Eudoxus’ Kampyle was presented earlier.  While the historical references to 

Eudoxus’ proficiency as an instrument maker may add credence to the previous 

compass based solution, a plausible solution using curved lines and derived from 

the Plato device is presented as a simpler solution in this section.  Menaechmus’ 

solution seems almost certain to have either been derived from the device or 

conversely it may have been the basis for the device. 

  



Plato’s Mean Finding Frame 

 

The device for finding two means between two 
extremes that Eutocius attributes to Plato is a 
U-shaped frame with an adjustable sliding bar 
across its mouth. 

It is set up for use by drawing two 
perpendicular lines and marking off a length 
OA from their intersection on one line and OB 
on the other where OA and OB are the two 
lengths between which two means are sought.  
Aligning the frame to find the means is easier 
if pins are place at A and B. 

The sliding bar FE is then adjusted so that the 
frame HDCG can be placed over the two pins 
with side DC against pin A as shown. 

 

DC is then held against pin A as it is rotated it 
until  C lies on BO extended.  The bar is then 
adjusted so that it touches pin B. 

 

Holding the frame against pin A and keeping C 
on BO extended, adjust the bar as the frame is 
slid downward until E lies on AO extended and 
the bar is against pin B as shown. 

CO and OE are the required two means 
between AO and BO. 

The usual proof is based on the theorem that 
the altitude of a right triangle divides the 
hypotenuse into two sections and it is the 
mean between those sections.  From this, 
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Arm DH of the frame serves only to keep the movable bar FE parallel to DC.  A 

simplified version can be made from a pair of foam board carpenter squares and a 

card stock sleeve.  The example shown here is used to finding the two means 

between 200 and 100 mm. 

As can be seen in the next photo, the sleeve was cut into two parts and a part of 

the sleeve attached to each short arm near the right angle to keep them parallel as 

they slide in the sleeves.  

Then, as with the frame, 

one leg is held against the 

pin at D and corner at the 

opposite end is aligned 

with point C located on 

AO extended and the 

other arm is slid up to 

touch pin A.  The whole 

device is then slid 

downward while rotating 

it to keeping point C on 

the line and adjusting the 

other arm to keep it 

against pin A until the 

corner on that arm, point 

B, aligns with the line DO 

extended as shown.  OB 

and OC are then the 

required means between 

AO and DO. 

  



Consider now if a parallelogram is constructed with sides DE and AF with points B’ 

and C’ attached so that they are constrained to move along AO and DO and the 

sides of the parallelogram to which they are attached as shown in this figure. 

Vertices A and D are fixed 

and make AD stationary but 

rotating DE about D rotates 

the opposite side of the 

parallelogram AF about A so 

that the sides remain 

parallel as they rotate. 

C’K is perpendicular to and 

attached to DE at C’ and 

intersects AF at K.  Since 

DE and AF are parallel C’K 

is also perpendicular to AF. 

Rotating the parallelogram 

so that the sides DE and AF 

rotate clockwise moves B’ 

away from O along DO 

extended while C’ moves downward toward O and line C’K rotates toward B.  Point 

K moves along FA but because the lines are rotating Point K actually follows the 

red curved path with K and B’ intersecting at B.  When this occurs, C’ will be 

located at C and the lines joining DCBA will be aligned as with the modified frame. 

Going a step further, B’H is 

added perpendicular to AF 

at B’ and intersecting DE at 

J.  Rotating F produces the 

blue curved path as J moves 

and crosses AO at C where J 

and C’ coincide. 

Thus the intersection of the 

curves KB’ and JC’ with AO 

and DO extended locate the 

means. 

For those skeptical of the 

“Kampyle” being Eudoxus’ 

solution of the cube 

problem, this offers an 

alternate possibility that some may find more consistent with Eratosthenes 

reference to “...that shape curved in the lines by the God fearing Eudoxus.” 



While the two curves above found the two required means the curves are unique to 

the device and cannot be created by any other means.  With a slight modification, 

however, the device can construct two curves which both solve the problem and 

can be constructed by other means. 

We temporarily remove the two arms that were perpendicular to AF and DE and 

replace them with ones that are perpendicular to AO and DO extended. C’H and 

B’H in this drawing.  Tracing the path of point H as DE and AF are rotated results 

in the crimson curve passing through H. 

Since DE and AF are parallel 

they divide AC’ and DB’ 

proportionally.  That is 
  

   
 

   

  
 and, by re-

arranging, 

             . 

That is, the area of the 

rectangle created by the lines 

cutoff on AO and DO extended 

by lines dropped perpendicular 

to them from a point H on the 

curve is equal the area of the 

rectangle with sides DO and 

AO.  These are known and constant and when H is correctly positioned OB’ and 

OC’ will be the required means.  Unfortunately there is insufficient information to 

position H so back to the drawing board. 

We draw the red line C’G 

and draw a line parallel to 

OC’ through G intersecting 

C’H extended at L.  The 

path of L as DE and AF are 

rotated is traced 

producing the red curve. 

At the point where H and L 

overlap C’G and JB’ are 

collinear and the ordinates 

of H (and L) are the two 

means. 

Notice that M produces 

the same curve as H and N 

produces a curve that 



intersects the curved generated by H and L at the point that they intersect.  Thus 

any two of the three curves can be used to find the required means. 

The wisdom of the internet is that Menaechmus did not have a mechanical device 

for drawing these curves.  I think it likely that he did have such a “compass” or a 

mesolabe as both Eratosthenes and Descartes two millennia later called them but, 

as with many other things, there is no definitive answer. 

Now OC’:OG::JO:OB’ from which OJ*OG=OB’*OC’=AO*DO.  The area of the 

rectangle created by the lines cutoff on AO and DO extended by lines dropped 

perpendicular to them from a point M on the curve is equal the area of the 

rectangle with sides DO and AO just as was proven for point H. 

On the other hand, the altitude from the side opposite the right angle of a right 

triangle divides the side into two segments and is the mean between the two sides.  

That is OD:OC’::OC’:OG and AO:OB’::OB’:OJ.  But OJ=NB’ and OC’=GL thus L is 

the plot of the means between DO and OG while N is the plot of the means 

between AO and OJ. 

Since the properties of right triangles had studied extensively by the Pythagoreans 

it seems reasonable to assume these curves were recognized by Menaechmus.  

How they became associated with right-angled and obtuse-angled cones as they 

were identified in Euclid Elements a few years latter is less obvious but mainly 

because of the geometrical properties of right triangles and the method of 

application of areas is unfamiliar to modern readers. 

For example, the numerical version of the Pythagorean theorem, “the square of the 

hypotenuse is equal the sum of the squares of the sides forming the right angle” is 

well known, but the geometrical version in Euclid’s Elements VI.31 is not. 

“In right-angled triangles the figure on the side opposite the right angle equals 

the sum of the similar and similarly described figures on the sides containing 

the right angle.” 

Restated for our purposes this becomes “the figure on one of the sides containing 

the right angle equals the difference between the figure on the side opposite the 

right angle and the figure on the other side that contains the right angle.” 

  



In this figure, angle OCB is a right angle as indicated by point OC lying on 

semicircle OB. 

OC has a fixed value, f.  Point B 

was initially positioned at point 

A where OC lay along OA and 

OA=OC= f and BC=0. 

As B is moved to the right the 

length of OB increases as does 

the length of BC.  This in turn 

increases the area of the 

squares on both OB and BC.  

Because Angle OCB is fixed, the 

increase in BC causes OC to 

rotate about O but the square on 

OC does not change. 

The square on OB is comprised 

of the square on OC plus that on 

BC.  Thus, the square on BC is 

the difference between the square on OB and the square on OC.  

The square on OB is shown divided into areas that are equal the squares on OC 

and BC.  DB has been constructed perpendicular to OB and equal BC. Hence the 

area of the square on BD equals the area of the square on OB that corresponds to 

the area of BC. 

The trace of point D then generates a curve AD whose ordinate D at any point on 

the curve has a length such that the square on the ordinate equals the square on 

OB less the square on OC=OA=f. 

This leads to an obvious observation.  The blue area of the sq OB is the rect 

MB*OB=BC*BC when CM is the altitude.  That is BC is the mean between MB and 

OB.  While this is true for any right triangle, remember that in this application OC 

is fixed. 

Many of the properties of right triangles were known to the Pythagoreans and at 

some point they also developed what is now referred to as the application of areas 

to a line.  Like many other facets of ancient geometry, the impetus for its 

development is unknown and may have resulted from the general advancement of 

the art.  It was used for determining and verifying the properties of curves but the 

extent to which it may have been used for the drawing of curves is unknown. 

Apollonius would use it later to show that the sections cut from an arbitrary cone 

were the same as the curves from the earlier era.  We show how it is related to the 

right triangle method and use it to find an obtuse cone containing a given section. 



The first step is to repartition the 

area on the hypotenuse.  The slice 

along OG that was the area of the 

square on OC is replaced with the 

square OAFE having the same area. 

AF is extended to intersect GL at Q 

and EF to intersect BL at P.  The 

diagonal of OF lies on the diagonal of 

the square OL and AFEGLB is a 

gnomon of area = the area of the 

square on the ordinate BD=BC. 

To eliminate the right triangle stuff 

requires an alternate method of 

constructing a rectangle on AB and 

AQ extended with an area equal that 

of the gnomon for all AB.  You can probably see how this needs to be done but to 

make it look authentic we quote Euclid II.4 

“If a straight line is divided into any two parts, 

the square on the whole line is equal to the sum 

of the squares on the two parts together with 

twice the rectangle contained by the two parts. 

The square on OB can thus be viewed as 

consisting of the square on OA plus the gnomon 

confirming our observation above and the right 

triangle components can be replaced with two 

rectangles having one side of fixed length OA and 

the other side of length AB plus a square with 

sides of length OA. 

This reduces the model to that shown at the left 

where rect AP consists of a square AB*AB and 

two rectangles OA*AB which now needs to be 

converted into the sq BK with the same area. 

This is done by drawing arc ABW to extend PB by 

the length AB to point W.  A semicircle with PW as diameter is then used to find 

BN the mean between PB and BW.  BD is then made equal to BN.  The square on 

BD now equals the area of the rect AP which equals the area of the square on OB 

less the square on OA as it did when using the sides of the right triangles to 

calculate BD. 



The trace of D is now congruent with 

that generated by using the right 

triangle procedure which achieves the 

original goal. However, by adding a few 

lines more information about the curve 

becomes available. 

To this end, diagonal PQ is extended to 

intersect AO extended at point R.  RS 

and RQ are added to complete the sq 

RQ which has sides of length 2OA. 

RA extended is the diameter of the 

curve, BD is the ordinate and AB is the 

part of the diameter cut off by the 

ordinate. 

Using this nomenclature we can 

describe our curve with the assertion 

that “the square on the ordinate is equal to the rect AB,BP applied to the line AQ 

and exceeding it by a square.”  The “applied to line” AQ is called the parameter. 

This seems strange a modern reader familiar with algebra but another two 

millennia will pass before algebra shows up on the time line.  For the geometer of 

that time the ratio AQ:RA is the ratio of the square on the ordinate to the rectangle 

formed by the diameter RB and the part AB that is cut off by the ordinate. 

That the diagonal of the square QP lies along the extended diagonal of RQ shows 

that the area of the square on the ordinate is increasing but that the area has a 

constant ratio to the area of the rectangle on AB.  i.e., BD*BD:AB*BP=AQ:RA. 

  



In “The Works of Archimedes” Heath asserts that “It may be taken as certain that 

the following properties … were proved in the conics of Euclid.”  This item is 

included in his list. 

In a hyperbola, if P be any point on the curve and PK, PL be each drawn 

parallel to one asymptote and meeting the other PK*PL = (constant.) 

This property, in the particular case of the rectangular hyperbola was known 

to Menaechmus. 

This property may have been the basis for connecting the curve created by the 

frame device with the curve generated using a right triangle, or, the connection 

could have been established by aligning the axes of the curves and thereby 

discovered this property for the AOA curves. 

There are contradictory accounts but Plato seems to have not been pleased with 

the solutions Archytas, Eudoxus and Menaechmus devised to solve the Delian 

problem.  Eratosthenes’ statement to “…not cut the cone in the triads of 

Menaechmus” implies Menaechmus may have resorted to actually slicing a cone to 

produce the curves he needed.  The AOA method provides all the information that 

is needed to find a right cone containing a given curve using a cutting plane that 

was perpendicular to a cone generator. 

Some dimensions are needed to construct a cone and cut it so that the section is 

the desired curve.  Thus in this figure the we show the measurements on an AOA 

model that has been adjusted to 

match our plato model for finding 

the two means between 1 and 2.  

The goal here is to find a cone and 

section so that the curve from the 

cone matches this curve. 

Our solution will be similar to the 

section shown in the cutaway view 

on the following page.  The cutting 

plane is perpendicular to a cone 

generator and is also perpendicular 

to the plane that both that 

generator and the cone axis lie on 

called the axial triangle plane. 

The diameter of the curve lies along 

the intersection of the cutting plane 

and the axial triangle and thus it 

too is perpendicular to a cone 

generator. 



The curve vertex, A, is the 

intersection of the curve axis and 

the cone generator line.  Point R 

is at the intersection of the curve 

axis and a cone generator 

external to the cone.  (It is 

actually a generator of the upper 

nape of the cone which is first 

documented in Apollonius’ works.)  

Point O lies mid-way between 

points A and R. 

Finding the solution involves 

finding the cone vertical angle, 

constructing a cone with that angle, finding the cutting plane location and finally 

cutting the section from the cone.  The properties of the curve as taken from the 

AOA model are used to calculate the properties of the cone and the angle and 

location of the cutting plane. 

Cone and cutting plane design. 

 

Let PP' be a line which will become side of the axial triangle of the cone.  

Draw PP' diagonally so that P' is higher than P. 

Using data from the AOA model locate a point A on PP' so that AP' ~ 2*OA. 



Construct a line through A perpendicular to PP'. 

Locate points R and O on the perpendicular line above PP'. 

Locate point L on the opposite leg of the perpendicular so that AL=OA. 

Construct a semicircle with RL as diameter on the P' side of RL. 

Construct a line perpendicular to RL intersecting the semicircle at B. 

Draw a line connecting RB and another connecting BL.  Angle RBL is right. 

BL extended is the axis of the cone.  

Locate point V at the intersection of PP' and the line BL. 

Draw RV.  RV extended is the other side of the axial triangle. 

This cone, cutting plane and section as constructed using SketchUp is shown in the 

next figure.  Measurements and the asymptotes are also shown. 

Section cut from Obtuse Cone 

Comparing the dimensions from the cone with the ones we calculated there is good 

agreement between the cone and section with the AOA model.  While this is a good 

indication that the section was successfully created it does not prove that the curve 

is a hyperbola. 



A geometric proof is needed.  i.e., it must be shown that for any arbitrary point on 

the curve that when the square on the ordinate is applied to the parameter as a 

rectangle having a width equal the distance from the vertex cutoff on the diameter 

by the intersection of the ordinate with the diameter it exceeds it by a square.  To 

do this we essentially reverse engineer the Application of Area method use for 

designing the cone. 

This is especially easy to do when the section plane is perpendicular to a cone 

generator as is the case here. 

Choose Q to be the 

arbitrary point on the 

curve and cut the cone 

at that point with a plane 

parallel to the base.  

This produces a circle 

with diameter MN 

centered on the axis of 

the cone VL.  This makes 

the ordinates of the 

curve at B, coincident 

with the chord QQ’ of 

the circle and thus 

QB2=QB*QB’=MB*BN 

On the axial triangle we 

construct rect BH,BJ 

with BH=BN and BJ=BM 

and then apply the area 

of rect BH,BJ to AC with a width 

of AB. 

SH is then extended to intersect 

CV extended at K and KB is drawn 

and extended to intersect SJ 

extended at G. 

GI is drawn parallel to the 

diameter RB intersecting HB 

extended at P.  CF is drawn 

parallel to AB and RC is extended 

through P. 

KG is the diagonal of rectangle KG 

therefore triangle KSG = triangle 

KIG.  Similarly triangle KHB = 



triangle KAB and triangle BJG = triangle BPG.  Subtracting the area of these equal 

triangles from the area of the bigger triangles of which they are part leaves 

rect.BH,BJ and rect.AB,BP which are thus equal. 

QB2=BH*BJ=AB*BP and AB*BP has been applied to AC exceeding it by the square 

CP.  The section cut from the cone has thus been shown to be the same as those 

created using the AOA method, the right triangle method and the parallel lines 

version of Plato’s frame and is the curve called a section of an obtuse-angled cone.   

A similar process can be used to show that the other two curves drawn by 

Menaechmus’ mesolabe have the property that the area of the square on the 

ordinate is exactly equal to the area applied to the line AC with a width AB.  Both 

of these curves are thus “sections of a right-angled cone. 

Archimedes may have been the first to define a cone as having a circular base.  The 

cone itself could be elliptical but if the base was not circular he called it a segment 

of a cone.  He devised methods of constructing bases that converted segments of a 

cone into cones.  Even so he continued to refer to the curve produced by cutting a 

cone with a plane as if they had been cut from an xxx-angled cone. 

Apollonius too required that a cone have a circular base but he also required that 

the cutting plane be perpendicular to a diameter of the base or to an extension of a 

diameter.  Then using the properties of the cone and the angle the cutting plane 

made with the base the sections could be characterized by a diameter, a parameter 

and the angle between the principal diameter of the section and the ordinates. 

This was sufficient to enable the section to analyzed using the AOA method to 

determine if when the area of the square on the ordinate was applied to the 

parameter it  “fell short”, “equalled” or “exceeded” the parameter and thereby 

showed that the curves were the identical to those created by various methods. 

Apollonius said he would call those that fell short, ellipse, those that equaled, 

parabola and those that exceeded hyperbola.  Whether these are simply the 

translation from the Greek of those terms or whether Apollonius is saying that he 

has shown that they are the same curves so he will call them by the same names 

someone had previously given them cannot be conclusively determined. 
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