Green Cheat Sheets - Ty Harness
These are the Trent Polytechnic Nottingham green cheat sheets dated 1975 [Alas I don't know the original author(s).] Just the standard intergrals and differentials that you're expected to memorise (but sometimes you were allowed them in an exam.)
Algebra
Trigonometry
Intergration
Differentiation
Laplace Transforms

Intergration Formulae (a and b must be constants)


An arbitrary constant should be added to each indefinate intergral.
Indefinate intergrals can differ by constant.
It is assumed that arguments of the logarithms are positive.
(34) \( \int \sqrt{a^2 - v^2} dv = \)
(1) \( \int v^n dv = \frac{v^{n+1}}{{n+1}}\) where \( (n\neq-1) \) (2) \( \int \frac{1}{{v}} dv = \int v^{-1} dv = ln(v) \) (35) \( \int \sqrt{v^2 - a^2} dv = \)
(3) \( \int \frac{1}{{av + b}} dv = \frac{1}{a} ln(av+b) \) where \( (a\neq 0) \) (4) \( \int e^v dv = e^v \) , and \( \int e^{av+b} dv = \frac{1}{a} e^{av + b} \) (36) \( \int \sqrt{a^2 + v^2} dv = \)
(5)\( \int sin(av + b)^n dv = \frac{(av + b)^{n+1}}{a(n+1)} \) (6)\( \int sin v dv = -cos v \) (37) \( \int e^{f(v)f'(v) dv = e^{f(v)} } \) (38) \( \int [f(v)]^n f'(v) dv = \frac{[f(v)]^{n+1}}{n+1} \)
(7)\( \int sin(av + b) dv = -\frac{1}{a} cos(av + b) \) where \( (a\neq 0) \) (8)\( \int cos v dv = sin v \) (39) \( \int \frac{f'(v)}{f(v)} dv = ln[f(v)] \) (40) \( \int ln(v) dv = v[ln(v)-1] \)
(9)\( \int cos(av + b) dv = \frac{1}{a} sin(av + b) \) where \( (a\neq 0) \) (10)\(\int tan v dv = -ln(cosv) = ln(secv)\) (41) \( \int u \frac{dv}{dx} dx = uv - \int v\frac{du}{dx}dx \) (42) \( \int e^{av}sin(bv) dv = \frac{e^{av}}{a^2 + b^2}[asin(bv) - bcos(bv)] \)
(11)\(\int cot v dv = ln(sinv) \) (12)\(\int \) or \( \int udv = uv - \int vdu \) (43) \( \int e^{av}cos(bv) dv = \frac{e^{av}}{a^2 + b^2}[acos(bv) - bsin(bv)] \)
(13)\(\int sec v dv = ln(sec v + tan v) \) (15)\(\int \)
(14)\(\int cosec v dv = - ln \) (17)\(\int \) (44) \( \int f(x) dx = \int f(g(u))\frac{dx}{du} du \) where (45) \( \int_0^\infty e^{v^2} dv = \frac{\sqrt{\pi}}{2} \)
(16)\(\int sin^2v = \frac{1}{2}(v - sin v cos v) \) (46) \( \int_{0}^{\frac{\pi}{2}} sin^nv dv = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}vdv \) for any n
(18)\(\int cos^2v = \frac{1}{2}(v + sin v cos v) \) (48) \(\int_{0}^{\frac{\pi}{2}} sin^mvcos^nv dv = I_{m,n} = \frac{m-1}{m+n} I_{m-2,n} = \frac{n-1}{m+n}I_{m,n-2} \)
(19)\(\int cosecv cotv dv = -cosecv \) (20)\(\int sinhv dv = coshv \)
(21)\(\int coshv dv = sinh v\) (22)\(\int sech^2 v dv = tanhv\)
(23)\(\int cosech^2v dv = ln(sinhv) \) (24)\(\int tanh v = ln(coshv)\) Numerical Intergration
(a) Trapezium rule. One strip \( \int_{x_0}^{x_1} y dx = \frac{h}{2}[y_0 + y_1] + \epsilon \)
(25)\(\int cothv dv = ln(shinhv) \) (26)\(\int sechv dv = 2tan^{-1}(e^v)\)
(27)\(\int cosechv dv = ln (\frac{e^v-1}{e^v+1}) \) (28)\(\int sechv tanhv dv = -sechv\) (b) Simpson's rule. Two strip \( \int_x_0 \)
(29)\(\int \frac{1}{a^2 + v^2} dv = \frac{1}{a}tan^{-1}(\frac{v}{a}) \) (30)\(\int \frac{1}{\sqrt({a^2 - v^2})} dv = sin^{-1}\frac{v}{a} \)
(31)\(\int \frac{1}{a^2 - v^2} dv = \frac{1}{a}tanh^{-1} (\frac {v}{a}) \) (c) Milne 4 strip \( \int_x_0 ydx = \frac{4h}{3} [2y_1 - y_2 - 2y_3] + \epsilon \) where
(32)\(\int \frac{1}{\sqrt{v^2 + a^2}} dv = sinh^{-1} (\frac{v}{a}) \) or \( ln[v + \sqrt{v^2 + a^2}] \)
(33)\(\int \frac{1}{\sqrt{a^2 - v^2}} dv = cosh^{-1} (\frac{v}{a}) \) or \( ln[v + \sqrt{v^2 - a^2}] \)